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relative to the wave, is egual to the group veloclty of the wave with
negative or positive sign: at the former point, disturbances caused by : ¥
the body, and existing ahead of the body, begin to grow to infinite
amplitude; at the latter point, monochromatic waves behind the body
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finite amplitude. ' For the coincident wave-budy direction case, approxi- -4
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- ABSTRACT

- Surface waves at the'kater surface are influenced locally by
a submerged m0ving.slender body. In addition to the Kelvin
. wave pattern‘whicﬁkwould be created by the moving tody when

travelling at uhifo:@ speed ugder smooth water, waves on the

. surface can be diffractedg tﬁis report is concerned with the
diffraction effect. It:ié assumed that the body is moving at
constant speed, is not osciilating,_and that the wave heights
are small in cbmparison with the body dimensions, so that a

. linearized theory can be applied. Usiﬁg;sleﬁder bedy theory,

relative wave heights can befevalﬁated.l For monochromatic

waves, two critical, singular points, at which. the linearized
thecry does not hold, occur whenvthefcompohént of body velocity
in thé incident wave direction, .and relative to the wave, is
equal to the group velocity of 'the wave with negative or posi-
tive slgns at the former poinﬁ, disturbances caused by the
body, and existing ahead of the body, begin to grow to infinite

amplitude; at the latter point, monochromatic waves behind the

body propagate at the energy velocity of the wave, and are thus
also of infinite amplitude. For the coincident wave-body direc-
tion. case, approximate expressions for the results are obtained
for three paruvicular ranges of the encounter fréquency and body
velocity parameters. However, by considering a wave spectrum
with a local spectral density, instead of a monochromatic wave,
the Singularitiea of the linear theory can be removed and a mean
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increase in wave height can be defined over the entire encounter-
velocity domain., The required integrals over the wave spectrum
case are discussed; the actual numerical evaluetion of these

integrals has et to t2 carried out.

FORMULATION OF THE PROBLEM

When a body moves beneath surface gravity waves, the
question arises: to what extent is the propagating wave pattern
affected by the presence of the body? In addition to the sta-
tionary wave pattern created by the moving body when travelling
under smooth water, incident waves are disturbed by diffraction;
this phenomenon is the subject of the present study. It is
assumed that the body is slender and in uniform forward motion;
the initial discussion deals with monochromatic surface waves
travelling in a fixed direction.

The coordinate cystem 1s given in Figure 1; L/2 is the unit
of length, L being the length of the budy. The coordinate system
(8, n, €) 1is fived in the body and moves at speed V in the posi-

- tive § direction. The contour C({) of the transverse vertical
cross section 1s described by the function nn = f(&, (). The
wave heights are assumed to be small compared to the body dimen-
sions even when the tody is near the free surface; consequently,
a linearlzed theory can be applied.

Since the fluld cen be assumed to be incompressible,
inviscid and irrotational, the problem can be described by a
velocity potentlial ¢, or, in a dimensionless notation
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®p = O $/8L [1]

where

_ -iot -i0t
GT—Y!‘DO*'@We +¢e

(2]
with ¢ the frequency of wave encounter, ®, the steady part of
the potential due to the forward motion of the body, o, the
potentlisl of the incident wave, and ¢ characterizing the dis-
turbance of 9, due to the presence of the body. 952 @0 and o
are all time independent, and the encounter parameter y is

given by |

v = oV/g (3]

The nondimensional wave potential ww is given by

ww(g,n,C) _ hek(C-2d) + ik(& cos @ + n sin a) (4]

with a the angle of the incident wave direction with the negative

€ axis, d the body depth divided by L, and h the wave height
parameter given by

h = gH/wL (5]

with H the wave height, and w the wave frequency in a co-

ordinate system fixed in space. The non-dimensional wave
number k is given by

| oaasingd

‘g vl -
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K = w3L/2g = nL/A (67

-

with A the wave length. The relationship between ¢ and @ is
given by

c=w - Vy® cos a/g [7]

By defining

/2

6 = wi/g = Fr(2kd)™ = v/c (8]

with the Froude number based on depth

1/2
Fr = V/(gld) / f9]
. ‘the wave encounter parameter y can be related to the velocity
parameter § by
y=28- 8% cos a 110]

The wave encounter problem ls discussed in Reference 1

with particular regard for the interpretations to be given to

encounter and velocity parameters so that a wave potential of

the form given by Equation [4] can be assumed to hold throughout

the 0 - a plane. These results can be summarized as: the

velocity V i1s always 20; for & cos a < 1, the encounter fre-

quency is equal to o by Equation [7], and the encounter angle
- is a; for 8 cos a > 1, the encounter frequency is equal to -0,
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the encounter angle is a + m, and the wave encounter parameter
given by Equation [lO] changes sign so as to remain 2 0. These
interpretations will be discussed later when the particular

case of coincident encounter (a = 0, m) is considered.

There are several solutions to the problem of wave dif-
fraction over a submerged cylinder, with the waves travelling
normally (Reference 2) and obliquely (Reference 3) to an
infinite cylinder. The solution given in the present report
employs slender body theory and assumes that the (finite) body
has a fine shape at the bow and stern; it is thus particularly
well suited to the case of co~lncident wave-body direction, but
not as applicable to the normal encounter case.

A theoretical treatment of the siender body diffraction
problem is given in Reference 4, but assumptlions restricting
the encounter angle to 0 and 7, and the body velocity to very
small values, limit its applic-blllity.

A detalled statistical evaluation of surface wave diffrac-
tion is outlined in Reference 5, but the required scattering
function to which the m.thod would be applied 1s not discussed
in any detall., The approach taken in the present report is
almed at, first, obtaining the scattering behavior, and then
treating the statistics of waves in a simplified manner.




R

HYDRONAUTICS, Incorporated

-6-

THE GENERAL SOLUTION

Following the approach of the hydrodynamic theory of ship
motion, (References 6, 7) the function ¢ may be written as

X

o(%,n,0) = [ as { ¢ F(8,¢) G(1 + (£,,)° + (f,c)')i‘ [11]
where (§,n,€) 1s the point in the (£,n,() co-ordinate system
where the wave potential is to be determined, F(&,{) is the
unknown source strength at the body surface, and G(E}?LE} g, ()
is the Green's functlion which satisfied the Laplace equation,
the free surface condition, and the radiation condition. The
function F is determined from the boundary condition at the
body

39
®»___w
3N 3 (12]

The function G is discussed in References 6 and 7.

Approximate expressions for ¢ will be derived in the
following paragraphs for the case of a slender body.

The Slender Body Approximation

In slender body theory, the transverse dimensions of the
body are assumed to be small with respect to the length of the
body. Using this assumption, G behaves at the body surface as
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N

& m 1/((8-8)2 + (M-n)® + (E-c)‘)* + K(%,8) [13]

where K 1s a function only of & and §. Using Equations [4] and
[11], the boundary condition of Equation [12] becomes

3

-lHTF( g’ C) -2 an

aCR(5,€) n ((7-0)* + (E-0)")? (14 (2, )} -
C

| _ _ -2kd+ikE cos a 3
= -kh(1 sin a sgn(g) + (f,g) sgn (n))e /(1+(f’f)a)

(1%]
Integration along the cross section contour with respect to T
gives the functions

S(T) = [ o€ BB (1 + (r,70)}
C

_ -2kd + 1kE cos a
= hic [B(F) + 17(T) stna] e ser [15)
s,-g-('g') = 1kS(%) cos a + T(3) | [16]
_ -2kd + 1k€ cos a |
(%) = hk [5,-5 + 17,5 sin a] e /2 17)

where B(€) is the dimensionless horizontal cross-section offset,
and T(E) the dimensionless lateral vertical cross-section offset.
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The wave height 1s determined from the behavior of the
potential ¢ at the free surfacs. At € = 2d the function G
(see Reference T7) behaves as

Gw2/((2-2)% + M3+ 4da)é + G + Gas g (18]

with -2qd+1q(€-£) cos 0

61 ® —
A (q,08)e cos (rg sin @)
-1!'Gn/2 =f dequ +
" (67q® cos® 8/k) + 2yq cos 8 + (v*k/62)-q

(o]

w/2 -
A, (q,e)e-aqd+1q(§-§) o8 8,08 (na sin 8)
+f dﬂqu +

(6%q® cos® 6/k) + 2yq cos & + (v*°k/6%)-q

5, M
r/2 -
f a d Bn (q,e)e"QQCH-W(g-g) cos Bcos (-;n sin e) [19]
+ 0 q
o M (6%q® cos® 8/k) - 2yq cos & + (y2k/6%)-q
| whefe
A, = B, = y*k/6°
Ay = -1((8%q cos 8/k) +2v) |
By = 1((6% cos 8/k) -2v) - (20]
and , | - | |
6, = cos~® (1/4y) [21]

PR SRR TN P
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A The integration contours M, and M, in the g plane are given
by

Q. Y Qs Qe
v U

The poles q,, Qs Qss and g, of the integrands are

+1

Qiss = k(1-2y cos 6 (1-4y cos 0)*)/26’ cos® @

Qsse = k(1+2y cos 8 + (1+4y cos 0)})/26' cos® @ fe2]

Assuming 8(1) = S(-1) = 0, the potential ¢ at the free
surface can be written as '

1
o(T..20) = [a8 BWOAT-0)* + T + 2ar)be
-1 )

1 1 ‘
+[d§ s(¢) q, +! at s(’g)ngﬂa | f3)

The Wave Systen

Bincc only the wave pattern is of 1ntcreat here, the lcvc
portion, Q. of the pceontinl ¢ will be considorod The wave
contribueion of o denoted by 8, enanates from the rouiduo
‘of the four polol. Using lquntions (15], [16]. (17) und [23].
and lntogrntinc by parts, . becomes

R e g R
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1 1

$(%,m,2d) =f g S(&) (g +1k g cos a) +f dg T(8) &, [o4]
-1 -1

where g 1s defined, for €-£ < 0, in front of the body,

7/2 -, (9) (2-1(-§) cos o)
g, = ‘*if s A (q.(8),0)e X
8.
x cos (m, (8) sin @)/(1-ky cos e)§ (e5]

and for £-% > 0, behind the body,

/2 -q5(0)(2a+1(2-E) cos 8)
g, = Mf de An(q,(e),e)e cos (ms(8) sin 6)/(1-by cos e)* +

8,
/2 -qs(8)(2a-1(2-8) cos 8)

+’+1f a0 Bn(q;(e),a)e cos (m,(8) sin 8)/(1+4y cos 0)5- ‘
o .
/2 -9, (8)(2d-1(8-8) cos A)

- kij’ Bn(q.(O),O)e cos (mq,.(6) sin 8)/{1+4y cos e)* - [26]
o o |

From this it can be concluded that one wave 1s progressing in
front of the body and the other three are tehind the body.
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The existence of this wave pattern can easily be 1llustrated
by consldering the two-dimensional problem of a line source at
the surface of the water (see References 7 and 8). It can also
be understood by a rather simple consideration: In a coordinate
system fixed 1n snace, gravity waves must satisfy the dispersion
relationship, Equation [6],

w?® = 2gk/L or c? = gL/2k [27]

In a coordinate system moving at speed V in the direction (plus

or minus) of the waves the frequency is given ty
o = 2k(c & V)/L = 2gk/L & 2kV/L (28]

This relation shows that four waves exist, which have the same

frequency o, but different wavelengths.

Range of Parameters

As an "'lustration of the solution regimes, and the domalins
of the encounter and frequency parameters, the case of body and
wave in the same direction will be considered. This implies an
a vaiue of O or .

There are then thres domains of interest covering the cases
of the body heading into the‘uaves, the waves overtaking the
body, and the body overtaking the waves, In the rirst domain,
the anglie a is %, the body is heading into the waves, & cos a
i{s always less than 0, and
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The second domain occurs where, with a =0, 0£ 8 £ 1, and

Yy=0 -8, a=0 {30]
In the third domain, with a = O and 8 a2 1, the body is ov-r-
taking the waves, and redefinition of encounter parameters
_ implies
X Y= -8+8% ,a=7 (31]

In the firat domain, v increases steadlly from O as b
~increases from O; the point v = 1/4, which will become signif-
icant in subsequent paragraphs, occurs at b of*((a)‘ - 1)/2.
In the second domain, ¥ increases from O to a peak value of
1/8 at & = 1/2; then decreases back to zero; it is symmetric
about 6 = 1/2. The third regime has Y increasing with (6-1)
in the same way as in region one,

APPROXIMATE SOLUTIONS

In order to obtain a qualitative solution for the wave form,
approximate evaluations of the integrals of Equations [25] and
{26] can be carried out where the point of interest is far froa
the body (|T} »> 1).

Stationary Phase

The method of stationary phase may be applied to the
tntegrals in Equations [25] and [25], as long as all functions
except the exponential behave smoothly near the stationary point.
Using the series representations of Refersnce 9, the stationary
point at 8 = 0 ylelds the results, for v > 1/, ¢-f <o,
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g =0 2]
"ém;mPg-f§>°m
g = 0 (fqa:Qanr'lrf'B'ﬂ‘/l})'F ﬁ (Q4 p’oﬁ’Bn:'l'i""T/&.) E33]

where 7-qm(a)(2d+iu(§ E))j+iv

N ui#xv)%B (q (B)Ae)e : , ‘
i ("}mi'e‘}»Q,Bn:ua‘V} = % [34]
) | L !>q ’e)(l huy) |€I

The po’@s q_ are m1Vﬁn by Equation [227. Por v > 1/4, q, and

da h=ve 1maginary part« and thus produce an exponentlal decay

which resu;ts in their omﬂssion

The next te rm in the g, solution serles at the 6 =0
stationary point is of order | €} 3/3 ‘At the 8§ = m/2 point,
however, a term of or-dcafl"_lt!.'\”1 exists; Equation [33] then has

an additionel term

| 14B,_(4s (1/2),m/2)e™23 (7728 o (R, (n/2)) /a5 (n/2) 81 [35)

a/e

before terms of \E!’ /® appear. This result is of interest

t;'”:- ~ because it shows that the wave diffraction phenomenon is pre-
: dominant along the axis of the body (m = 0), with off-axis
disturbances decaying as \Ei“. In all subseyuent results,

however, only the leading terms of order 1g]-/® will be

carric i

T T P g T
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‘The wave diffraction potential 3 can now be written, for
vy > 1/4% and € > 0, as

®=0 (36]
while for € < 0,
3 = $(ae (0),-1,-31/2) + H(ag (0), -1,41/%) (373
with
/ -2d(k+q_(0)) + 1uE§m(0) + 1v
A khe
V(qm(O),u,v) = — 4§ >y X
(r18]/2q_(0))%(1-4uy)*
1 1(k cos a-ug_(0))8
%}-d§(3+17 sin a)e m (38]
-1

For the case where v < 1/4; the poles g, and q, contribute,
leading to, for E-% < Q,

Gn = 6(Q1so,An’ + 1:-7/4) r39]

and for §-€ > 0,

g, = ﬁ(q,,o,An,+1,+w/4) + G(qa,O,Bn,-1,+3W/4) +

+ G(Q‘:O’Bn)‘li;‘V/u) [uo}

R, TR
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The wave diffraction potential now becomes, for v < 1/4 and
g5 0,

5 = O(Ql (O):+1:+7T/)'I’) . [41]
and for € < 0,

5 = "}(qa(o)9+l’+3'"'/b') + 0(% (0)"1-371'/4) + \I}(QS (O),'l:'*""'/u’) [42]

The cross- ectional area integral in Equation [38] for i
can be clarified by the relatlonshlps

1 1
fdg B(8) = ¥A/L® fd; T(8) = ¥A/L* (431
-1 -1

where A 1is the longitudinal-horizontal cross-sectional area of

the body, and A the longitudinal-vertical cross-sectional area.

Several quallitative results can be distilled from the
general results obtained so far, For ¢ imple, in the specific
~29d e'aqad, the body
1s moving directly into the waves, with a = 7, and l-4vy is not

case where d is large enough so that e >>
small, the term G(qa,-l,-kw/h) dominates the wave potential for
€ < 0 and values of v > 1/4. By comparing the wave potential
®, at a specific point € = -2x behind the body, the result

e+-v1/4

¢ (-2x,2d) = a o, (~2x,2d) [44]
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is nbtained, 1n which a can be regarded as an incident wave
height alteration factor, given by

a = s/ e~ T8 (rox? (144y)) " (45)

This expression provides a qualitative picture of the
interference effect for this particular case; the diffraction
effect is proportional to the inverse squave root of the dis-
tance behind the body, 1s exponential with the depth ratio d,
‘proportional to the waterplane area and the 3/2 power of the
dimenslonless wave number, and proportional to the inverse 1/4
power of the wave encounter parameter.

The values of the poles for the coihcident wave problem
are shown in Figure 2, and these may be used to assess the
relative values of the contributions of the poles to the total
solution. For the previous example, the value of q3/k 18 1
for the entire range where the body heads into the waves; q,/k
is always greater except when encounter y becomes large, where
its contribution apprqaches that of the g3 pole. For the over-
taking range, the qg pole is also smaller and so it contributes
the major portion of the result excent “her v becomes large.

An expression similar to Equation [45] ¢.uld be obtained for
this case by placing

48 (0)/k = (132y-(1487)}) 200 = ((1-0) /8)® (46]
into

BTN ‘-“~,»_u,<'_,‘.~.;ﬂ’i;
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% ~ M(as, ~L+m/H) | [47]

and comparing the result with Equation [4] with a = T and

_8 = 2d.

The entlre range of values of v has now been covered, with
the exception of the region where v approaches 1/4; at these
points, the contributions from q, and q, become infinite, but
in different ways at different places. When y > 1/4 but ap-
proaching, the q, and qz contributlons, previously eliminated,
must be considered tc obtain the way in which these contribu-
tions become singular. For y < 1/4 but approaching, the q,
and gz contributions become singular in quite another way.

These two cases are considered next.
€ = 4y -1

The q, and Q; integrals require special consideration as
the statlonary phase polnt approaches the integration interval.
With the small parameter ¢ defined by

€ = 4y -1 (48]

The integrals depending on q, and q, may be written

T/2 _
g =‘[ de w(&)eigq<e)/(l-47 cos e)é
n
: 8
8, Tw/2 a

f *f ‘f+0<2-*) ‘ l49]

8, 6, 8
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where 6, is defined by Equation [21]. For small e,
3 ]
61 S (2e) [50‘
and Equation [49] may be reduced to

S
(8a-80)% 154 (0,+0,)

g, = ((e)/(vsm o) [ e [51)

o
where a change of variable has been employed. Evaluation of

the 1ntegral results 1in

g, =t 16%u(0y)e" 530 ) jys Taan 0y) [52]

which gives the way in which the g functions are singular as

e =~ 0,
The results for the g functions are, then, for g-£ <0
gl’l = E(QI.:e; :An:"‘l:‘*"’r/e) [53]

where

ﬂ'(qm(e).O.An,u.v) = IAJ X [Su]

with

X = cos (mq(8) sin e)a'/‘tkv'(wme/qm(e)(1-‘*7)*)* [55]

and for £-€ > O
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gn = ﬁ (qa, el,An,+1’-1T/2) +

+ 0 (Qa:O:Bn:'l:+31T/4)+ 0 (CJ«:.:O:Bn,-l’-Tr/u') [56]
The wave potential function 1s defined

~

T(a_(8),wv) = Ha (0),u,v) X (57)

which is accurate for small 6,. The wave potentials then

become, for E < 0,

?9. = V(Q;\.(el):"'l:"r) [58]

and for € > 0,

& = T(aa(0:),+1,0) + Ha, (0),-1,-37/4) + g (0),-1,47/4) [59]

€ =1 - by

The g, and qz contributions are also singular in the four
reglons where y < 1/4 but approaching 1/4. These four particular
points occur at

5 = ((2 - e)§ - 1)/2 [60]
for the body heading into the waves, and at
6= (12 ()2

and

6 = ((2 - e)5 + 1)/2 (61]
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for the body overtaking the waves

The evaluation of Equation [20] was carried out numerically
for small values of ¢ to determine the behavior of the gn

functions. The results are, for E-€ < 0,

g, = U(q,0,A ,+1,0) [62]

where
T(a,(6),0,A ,u,v) = 0 X (63)

with
| %= Gay@dTmtm (572 ()Tl (6]

and for ;-E >0,

g, = U(qs:0,A ,+1,0) +

+ ﬁ(q, ’ O,Bn’ -1,+31/4)+ 0((%:0:3“: -1,-w/4) [65]

In a similar fashion, with the wave potentlal function defined

&8s

Tau(0uv) = 4% (e6]

the wave potential becomes, for & < 0,

S PN s
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® = V(a, (0),+1,+7/2) [67]

and for E > O,

% = T(as(0),+1,+7/2) + $(a.(0),-1,37/4) + $(qa(0),-1,+w/4) [68]

The representation of the diffraction-altered wave fleld is
now complete., The ordinary type of statlonary phase representa-
tions hold throughout the range of v except there v m 1/4, at
which points elther the corrections of Equations (54] and 571,
or of Equations [63] and [66], must be applied.

WAVE SPECTRUM RESPONSE

The results of the previous sections can be used, together
with an appropriate wave-number spectrum, to define a mean wave

alteration parameter, a in the presence of a spectrum of waves.

An an example of how this would be carried out, the incident
. wave height reduction factor of Equation [45] for the head-on-
;ﬁ5 , encounter case will ve used. By defining the parameter

y = 24 - Te9]

Equation [45] may be rewritten

a=A y3/ 2 o~ /a12 (wxd(142 Fr yl/ 2‘)/2)1/2 - [70]
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The ratio of the difference of wave amplitude p and

reference wave amplitude p°° to the reference amplitude Poo
is then

P - Poo/Pog = & [71]
The ratio of energy densities is given by

E/Ege = (P/p,,)" [72]

The alteration In local spectral density, or mean wave height
alteration parameter a . is then

%)
a = 2o dk (E-E_)/L
co
= 2 { dk an (a® + 2a)/L (73]

Eco may be approximated by (see Reference 10)

- 3
E°° bL3/16k® k > ko

=0 k <k »[7“]

where the value of b is taken as .008. The final éxpression for
& then becomes

it i e L
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oo
a = i b_[ dy e-uy/(l+2 Fr yl/e)/vde'
2k d
o
co
+ADb (2d/1rx)1/2f ay y’3/2 e-2y/(1+2 Fr yl/2)1/2 [75]
2k d
o
E Evaluation of this expression can be carried out numerically for

specific values of x, d, A, ko’ and L.

The general problem which would, for example, consider the
case of following waves, is rather more difficult; a multiple
term expression for a, or, where y is close to 1/4, an expres-
sion with logarithmic components, is required. Since the final
expression for am must itself be evaluated numerically, a general
numerical procedure where the appropriate forms of the potential
; are used in the different regimes would seem to offer the best
solution to this complex problem. Because of the behavior of
the wave potentials near the y = 1/4 singular points, and be-
cause of the logarithmic and sqQuare root nature of the singuliar-
ities, integration over them to obtain the result for a wave
spectrum can, in principle, be carried out; actual numerical
evaluations are yet to be done,

CONCIUSIONS

The coinciient wave-body probiem chosen to illustrate ths
diffraction effect is seen to possess & multiplicity of problems
E » precluding a simple qualitiative result. The case with the body
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heading into the waves, with vy > 1/4 does, however, allow an
approximate result whch 1llustrates the way in which a mean

wave height alieration can be defined.

Equations [44] and [45] summarize these approximate
results. Using Equation [25] for the head-on encounter case,
Equation [45] can be rewritten

e'edk/(uea) = a%rx/16 (A/L®)® k3 {761

This relationship 1s shown graphically in Figure 3, where values
of the modified alteration factor, the right side of Equation
{76], are plotted against the gquantity dk for values of the

body velocity parameter & from O to 2.5. As noted previously,
as b becomes large, the contribution from the q, pole becomes
significant for this case, as shown in Figure 2. <Care must also
be taken, when applying these results, to recall the phase shift
given by Equation [#’] when computing the wave diffraction
effect, and that the alteration factor a in the same

equation multiplies I1ncident wave potential.
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